2015 HSC ASSESSMENT TASK 3

Mathematics
Extension 1

General Instructions

e Reading time — 5 minutes Class Teacher:
e Working time - 2 hours (Please fick or highlight)
e Write on one side of the paper
(with lines) in the booklet provided O Mr Berry
e Write using blue or black pen O Mrireland
e Board approved calculators may O MrLin
be used O Mr Weiss
e All necessary working should be O Ms Ziaziaris
shown in every question O MrZuber
e Each new question is to be started
on a new page.

e Aftempt all questions

Student Number:

(To be used by the exam markers only.)

Question [ 110 | 11 [ 12 | 13 | 14 | Total | Total

No

Mark Y T i T i 70 ﬁ

e
St



Section |
10 marks
Attempt Questions 1 — 10

Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1 — 10

1. What is the value of

sindx

LI—.r-IE\ ax
(A)o
(8):
(1
(D)

2. y = flx} is a linear function with gradient i , find the gradient of ¥ = f~*(x).
(A) 4
1
(B)

(C) -4

1
4

(D) -



Which of the following best describes the above function?

(A) y = sin™*(x + 1)
(B) y = sin"(x) + 1
(C)y=cos™'(x + 1)
(D) y = cos~*x) +1

What are the coordinates of the point that divides the interval joining the points A(—6.4} and
B(—2. —107 externally in the ratio 1:3?

(A) (—8.8)

(B) (=8.11)

(C) (2.8)

(D) (2.11)

el
=

< 2?

Which of the following is the solution to —
(A)x =< 2orx=3 o
(B) 2==x=3

(C) 2=x=3

(D) "3 =x=2



The polynomial P(x} = 2x* — 8x? + 7x — 14 has roots &, —a and 5. What is the value of 5?

(A) 2
(8) -2
(C) 4

(D) —4

The line TA is a tangent to the circle at A and TB is a secant meeting the circle at B and C.

Giventhat TA=4,CB =6 and TC = x, what is the value of x?

(A) 2
(B) 4
()6
(D)8

=% o
Given that log; 4 = x, find an expression for @ 2

(A) 2
(B) 4
(C)8
(D) 16

Find the gradient of the normal to the parabola x = 6¢, ¥ = 3t* at the point where t = —2.

(A) -2
(8) —=
(© 2

(%]

(D)



10.

An approximate solution to the equation f{x} = x + 2log, x is x = 0.5. Using one application of
Newton’s method, a more accurate approximation is given by:

0.5+log, 0.25
(A) 05— ——=——

0.5+log, 0.25
(B) 0.5 + +

5
(€05~ —————
0.5+log, 0.25

3
(D)0.3+ — -
D.J+10gg 0.25



Section Il

60 Marks

Attempt Questions 11 — 14

Allow about 1 hour and 45 minutes for this section

Answer each question on a NEW page. Extra writing booklets are available.

In Questions 11 — 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Start a NEW page.

(a) When the polynomial Flx} = 2x* — 3x? + ax — 2 is divided by (x + 1) the remainder is 7. What
is the value of a?

[(xiwdx

(ii)

[
x4+ 4 *
(iii)
et
i+ 4 *
(iv)
et
@i eaE
(c) Find the acute angle between the linesy =2x +land 2x + 3y —2 =10
(d) Evaluate

gin®2x dx

ljl"___S-It:r\-l.'-.

(e) Find the general solution to 2cos*x =1



Question 12 (15 Marks) Start a NEW page.

(a) (i)

(ii)

(ii)

(iii)

Without using calculus, sketch the graph of P(x)} = x(x + 2)(1 — x)?

Hence solve x{x + 2}{1 — x}* = 0

Using the substitution u = i find the exact value of:

A chef takes an onion tart out of the fridge at 4°C into a room where the air temperature is
25°C. The rate at which the onion tart warms follows Newton’s law, that is:

il k(T — 25
gt~ T—23)

where k is a positive value, time t is measured in minutes and temperature T is measured in
degrees Celsius.

e . aT .
Show that T = 25 — 4~ is a solution to o = —k(T - 25) and find the value of A.

The temperature of the onion tart reaches 13°C in 45 minutes. Find the exact value of k.

Find the temperature of the onion tart 90 minutes after being removed from the fridge.

Question 12 continues on page 8



(d) (i)

(ii)

(iii)

ABC is a triangle inscribed in a circle. MAN is the tangent at A to the circle ABC.
CD and BE are altitudes of the triangle.

Copy the diagram into your answer booklet.

Give a reason why BCED is a cyclic quadrilateral

Hence show that DE is parallel to MAN.

End of Question 12



Question 13 (15 Marks) Start a NEW page

(a)

(b) (i)

(ii)

(iii)

(c) (i)

(ii)

(d) (i)

(ii)

Is the graph of ¥ = log, x? identical to ¥ = 2log. x? Give a reason for your answer. 1

A particle is moving in a straight line. At time t seconds it has displacement x metres from a
fixed point O on the line, velocity v ms~* and acceleration a ms~% givenby a = x + 3 Initially

the particle is 5m to the right of O and moving towards O with a speed of 6 ms~*,

Explain whether the particle is initially speeding up or slowing down.

1
Find an expression for v* in terms of x. 2
Find where the particle changes direction. 1
Express 3 cos & — v/3 sin# in the form Acos(8 + &) 2
Hence, or otherwise, solve 3cos@ —+3sinf +3=0for0 <8 < 2n 2
A square ABCD of side 1 unit is gradually ‘pushed over’ to become a rhombus. The angle at A
(&) decreases at a constant rate of 0.1 radian per second.
At what rate is the area of rhombus ABCD decreasing when @ = g?

3

At what rate is the shorter diagonal of the rhombus ABCD decreasing when & = q:



Question 14 (15 Marks) Start a NEW page.

(a) Prove that 11*" + 11™ + 8 is a multiple of 10 for all positive integers n
(b) (i) Show thatﬁ{x sinT'x +4/1 —x%) =sin""x

(ii) Hence, using a similar expression, find a primitive for cos ~*x

(iii) The curves ¥ = sin™*x and v = cos " x intersect at P (%_ i )

The curve ¥ = cos~tx also intersects with the x axis at Q.

Find the area enclosed by the x-axis and the arcs OP and PQ.

(c) (i) A parabola has parametric equations
x=t'+1
¥ =2(2t + 1)

Sketch the parabola showing its orientation and vertex.

(ii) Point F is the point on the parabola where t = p
Point P' is the point on the parabola where £ = —p

Find the equation of the locus of the midpoint of PP’ and state its geometrical significance

(iii) A line with gradient m passes through (0.5} and cuts the parabola at distinct points Q and R.

Find the range of possible values for m.

End of Examination.
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